工程成果	安全芯片密码检测准则编制及密码芯片侧信道分析检测系统平台
	研制
申请人	周永彬
团队成员	周永彬、高旭、曹雨晨、孟林、冯明亮
申请人自述	(请简述工程成果的目的和意义,解决了什么问题,有何贡献或
	影响,在何处应用,应用效果等。总字数不超过1000字,可附页)
	智能卡密码芯片是一类具有安全功能的典型嵌入式计算设
	备,在电信、金融、医疗卫生等诸多领域应用十分广泛。安全芯
	片密码检测准则的制定及密码芯片侧信道安全性分析检测系统平
	台工具的研制是当前国际学术界与工业界共同关注的关键技术问
	题。制定科学、合理的安全芯片密码检测准则, 可为安全芯片密
	码测评工作提供可靠的参考基准,亦是开展安全芯片密码测评的
	重要先决条件; 研制相关的分析检测系统平台, 可为推动安全芯
	片密码测评实践提供重要的工具支撑。本项目成果获得之前,我
	国尚无此类密码技术标准,亦无具有完全自主知识产权的同类综
	合性分析检测平台。
	课题组主持编制了《安全芯片检测准则》(GM/T 0008-2012),
	国家密码管理局已于2012年11月22日将该标准作为中华人民共
	和国密码行业标准发布。自颁布至今,国家密码管理局商用密码
	│ │检测中心已经使用该标准完成了十余款国产密码芯片的安全等级│
	测评工作,为推动我国商用密码应用的水平提供了重要的技术参
	考。2013年12月,该工作获得密码科技进步奖(省部级)三等奖。
	课题组自主研制出面向密码芯片侧信道安全性分析综合分析
	检测平台,能够对符合 ISO 7816 国际标准的智能卡密码芯片进行
	侧信息泄漏(能量消耗)的自动采集和集成化的侧信道安全性分
	目前,该系统平台已成为实验室开展相关科研工作的重要环境与
	基础工具。2013年下半年,课题组代表实验室多次向多位国家重
	全····一八。 2010

要部门领导及中国科学院领导进行面向商用密码芯片样片的分析

攻击现场演示汇报,屡次获得中央领导和院领导的好评。围绕相关工作,课题组研制出原型设备 1 款、自主研制原型系统 1 套、发表学术论文 3 篇(含 1 篇录用)、申请专利 2 项(其中 1 项已完成授权缴费工作)、登记软件著作权 10 项(已获发软件著作权登记证书)。